39 research outputs found

    Use of FLUXNET in the Community Land Model development

    Get PDF
    The Community Land Model version 3 (CLM3.0) simulates land-atmosphere exchanges in response to climatic forcings. CLM3.0 has known biases in the surface energy partitioning as a result of deficiencies in its hydrological and biophysical parameterizations. Such models, however, need to be robust for multidecadal global climate simulations. FLUXNET now provides an extensive data source of carbon, water and energy exchanges for investigating land processes, and it encompasses a global range of ecosystem-climate interactions. Data from 15 FLUXNET sites are used to identify and improve model deficiencies. Including a prognostic aquifer, a bare soil evaporation resistance formulation and numerous other changes in the model result in a significantly improved soil hydrology and energy partitioning. Terrestrial water storage increased by up to 300 mm in warm climates and decreased in cold climates. Nitrogen control of photosynthesis is revealed as another missing process in the model. These improvements increase the correlation coefficient of hourly and monthly latent heat fluxes from a range of 0.5–0.6 to the range of 0.7–0.9. RMSE of the simulated sensible heat fluxes decrease by 20–50%. Primary production is overestimated during the wet season in mediterranean and tropical ecosystems. This might be related to missing carbon-nitrogen dynamics as well as to site-specific parameters. The new model (CLM3.5) with an improved terrestrial water cycle should lead to more realistic land-atmosphere exchanges in coupled simulations. FLUXNET is found to be a valuable tool to develop and validate land surface models prior to their application in computationally expensive global simulations

    Understanding the effect of disturbance from selective felling on the carbon dynamics of a managed woodland by combining observations with model predictions

    Get PDF
    The response of forests and terrestrial ecosystems to disturbance is an important process in the global carbon cycle in the context of a changing climate. blackThis study focuses on the effect of selective felling (thinning) at a managed forest site. Previous statistical analyses of eddy covariance data at the study site had found that disturbance from thinning resulted in no significant change to net ecosystem carbon uptake. In order to better understand the effect of thinning on carbon fluxes we use the mathematical technique of four-dimensional variational data assimilation. Data assimilation provides a compelling alternative to more common statistical analyses of flux data as it allows for the combination of many different sources of data, with the physical constraints of a dynamical model, to find an improved estimate blackof the state of a system. We develop blacknew observation operators to assimilate daytime and nighttime net ecosystem exchange observations with a daily time-step model, increasing blackobservations available by a factor of 4.25. Our results support previous analyses, with a predicted net ecosystem carbon uptake for the year 2015 of 426 ± 116g C m−2 for the unthinned forest and 420 ± 78g C m−2 for the thinned forest despite a model-predicted reduction in gross primary productivity of 337g C m−2. We show that this is likely due to reduced ecosystem respiration post-disturbance compensating for a reduction in gross primary productivity. This supports the theory of an upper limit of forest net carbon uptake due to the magnitude of ecosystem respiration scaling with gross primary productivity

    Comparative transcriptomic analysis of male and female flowers of monoecious Quercus suber

    Get PDF
    Monoecious species provide a comprehensive system to study the developmental programs underlying the establishment of female and male organs in unisexual flowers. However, molecular resources for most monoecious non-model species are limited, hampering our ability to study the molecular mechanisms involved in flower development of these species. The objective of this study was to identify differentially expressed genes during the development of male and female flowers of the monoecious species Quercus suber, an economically important Mediterranean tree. Total RNA was extracted from different developmental stages of Q. suber flowers. Non-normalized cDNA libraries of male and female flowers were generated using 454 pyrosequencing technology producing a total of 962,172 high-quality reads with an average length of 264 nucleotides. The assembly of the reads resulted in 14,488 contigs for female libraries and 10,438 contigs for male libraries. Comparative analysis of the transcriptomes revealed genes differentially expressed in early and late stages of development of female and male flowers, some of which have been shown to be involved in pollen development, in ovule formation and in flower development of other species with a monoecious, dioecious, or hermaphroditic sexual system. Moreover, we found differentially expressed genes that have not yet been characterized and others that have not been previously shown to be implicated in flower development. This transcriptomic analysis constitutes a major step toward the characterization of the molecular mechanisms involved in flower development in a monoecious tree with a potential contribution toward the knowledge of conserved developmental mechanisms in other species.This work was funded by FEDER funds through the Operational Competitiveness Programme-COMPETE and by National Funds through FCT-Fundacao para a Ciencia e a Tecnologia under the project FCOMP-01-0124-FEDER-019461 (PTDC/AGR-GPL/118508/2010) and the sub-project SOBREIRO/0019/2009 within the National Consortium (COEC-Cork Oak ESTs Consortium). Romulo Sobral was supported by funding from FCT with a PhD grant (ref. SFRH/BD/84365/2012). Margarida Rocheta was supported by funding from FCT with a Post-Doc grant (ref. SFRH/BPD/64905/2009). Teresa Ribeiro was supported by funding from FCT with a Post-Doc grant (SFRH/BPD/64618/2009). We are grateful to Alexandre Magalhaes for the kind help given in bioinformatic analysis

    Integrity of the corpus callosum in patients with periventricular nodular heterotopia related epilepsy by FLNA mutation

    No full text
    Objective: To investigate the quantitative diffusion properties of the corpus callosum (CC) in a large group of patients with periventricular nodular heterotopia (PNH) related epilepsy and to further investigate the effect of Filamin A (FLNA) mutation on these properties. Methods: Patients with PNH (n=34), subdivided into FLNA-mutated (n=11) and FLNA-nonmutated patients (n=23) and healthy controls (n=34), underwent 3.0T structural MRI and diffusion imaging scan (64 direction). Fractional anisotropy (FA) and mean diffusivity (MD) were measured in the three major subdivisions of the CC (genu, body and splenium). Correlations between DTI metric changes and clinical parameters were also evaluated. Furthermore, the effect of FLNA mutation on structural integrity of the corpus callosum was examined. Results: Patients with PNH and epilepsy had significant reductions in FA for the genu and splenium of the CC, accompanied by increases in MD for the splenium, as compared to healthy controls. There were no correlations between clinical parameters of epilepsy and MD. The FA value in the splenium negatively correlated with epilepsy duration. Interestingly, FLNA-mutated patients showed significantly decreased FA for all three major subdivisions of the CC, and increased MD for the genu and splenium, as compared to HCs and FLNA-nonmutated patients. Conclusions: These findings support the conclusion that patients with epilepsy secondary to PNH present widespread microstructural changes found in the corpus callosum that extend beyond the macroscopic MRI-visible lesions. This study also indicates that FLNA may affect white matter integrity in this disorder. Keywords: Corpus callosum, Diffusion abnormality, Epilepsy, FLNA, Periventricular nodular heterotopia

    Disrupted grey matter network morphology in pediatric posttraumatic stress disorder

    No full text
    Introduction: Disrupted topological organization of brain functional networks has been widely observed in posttraumatic stress disorder (PTSD). However, the topological organization of the brain grey matter (GM) network has not yet been investigated in pediatric PTSD who was more vulnerable to develop PTSD when exposed to stress. Materials and methods: Twenty two pediatric PTSD patients and 22 matched trauma-exposed controls who survived a massive earthquake (8.0 magnitude on Richter scale) in Sichuan Province of western China in 2008 underwent structural brain imaging with MRI 8–15 months after the earthquake. Brain networks were constructed based on the morphological similarity of GM across regions, and analyzed using graph theory approaches. Nonparametric permutation testing was performed to assess group differences in each topological metric. Results: Compared with controls, brain networks of PTSD patients were characterized by decreased characteristic path length (P = 0.0060) and increased clustering coefficient (P = 0.0227), global efficiency (P = 0.0085) and local efficiency (P = 0.0024). Locally, patients with PTSD exhibited increased centrality in nodes of the default-mode (DMN), central executive (CEN) and salience networks (SN), involving medial prefrontal (mPFC), parietal, anterior cingulate (ACC), occipital and olfactory cortex and hippocampus. Conclusions: Our analyses of topological brain networks in children with PTSD indicate a significantly more segregated and integrated organization. The associations and disassociations between these grey matter findings and white matter (WM) and functional changes previously reported in this sample may be important for diagnostic purposes and understanding the brain maturational effects of pediatric PTSD. Keywords: Pediatric PTSD, Topological organization, Graph theory, Brain network, MRI, Psychoradiolog
    corecore